Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Composition of quasi‐stationary solar wind flows from Ulysses/Solar Wind Ion Composition Spectrometer

Identifieur interne : 001366 ( Istex/Corpus ); précédent : 001365; suivant : 001367

Composition of quasi‐stationary solar wind flows from Ulysses/Solar Wind Ion Composition Spectrometer

Auteurs : R. Von Steiger ; N. A. Schwadron ; L. A. Fisk ; J. Geiss ; G. Gloeckler ; S. Hefti ; B. Wilken ; R. R. Wimmer Chweingruber ; T. H. Zurbuchen

Source :

RBID : ISTEX:C85B37DC10326CFC14C85F49911C6E3E18401C85

Abstract

Using improved, self‐consistent analysis techniques, we determine the average solar wind charge state and elemental composition of nearly 40 ion species of He, C, N, O, Ne, Mg, Si, S, and Fe observed with the Solar Wind Ion Composition Spectrometer on Ulysses. We compare results obtained during selected time periods, including both slow solar wind and fast streams, concentrating on the quasi‐stationary flows away from recurrent or intermittent disturbances such as corotating interaction regions or coronal mass ejections. In the fast streams the charge state distributions are consistent with a single freezing‐in temperature for each element, whereas in the slow wind these distributions appear to be composed of contributions from a range of temperatures. The elemental composition shows the well‐known first ionization potential (FIP) bias of the solar wind composition with respect to the photosphere. However, it appears that our average enrichment factor of low‐FIP elements in the slow wind, not quite a factor of 3, is smaller than that in previous compilations. In fast streams the FIP bias is found to be yet smaller but still significantly above 1, clearly indicating that the FIP fractionation effect is also active beneath coronal holes from where the fast wind originates. This imposes basic requirements upon FIP fractionation models, which should reproduce the stronger and more variable low‐FIP bias in the slow wind and a weaker (and perhaps conceptually different) low‐FIP bias in fast streams. Taken together, these results firmly establish the fundamental difference between the two quasi‐stationary solar wind types.

Url:
DOI: 10.1029/1999JA000358

Links to Exploration step

ISTEX:C85B37DC10326CFC14C85F49911C6E3E18401C85

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Composition of quasi‐stationary solar wind flows from Ulysses/Solar Wind Ion Composition Spectrometer</title>
<author wicri:is="90%">
<name sortKey="Von Steiger, R" sort="Von Steiger, R" uniqKey="Von Steiger R" first="R." last="Von Steiger">R. Von Steiger</name>
</author>
<author wicri:is="90%">
<name sortKey="Schwadron, N A" sort="Schwadron, N A" uniqKey="Schwadron N" first="N. A." last="Schwadron">N. A. Schwadron</name>
</author>
<author wicri:is="90%">
<name sortKey="Fisk, L A" sort="Fisk, L A" uniqKey="Fisk L" first="L. A." last="Fisk">L. A. Fisk</name>
</author>
<author wicri:is="90%">
<name sortKey="Geiss, J" sort="Geiss, J" uniqKey="Geiss J" first="J." last="Geiss">J. Geiss</name>
</author>
<author wicri:is="90%">
<name sortKey="Gloeckler, G" sort="Gloeckler, G" uniqKey="Gloeckler G" first="G." last="Gloeckler">G. Gloeckler</name>
</author>
<author wicri:is="90%">
<name sortKey="Hefti, S" sort="Hefti, S" uniqKey="Hefti S" first="S." last="Hefti">S. Hefti</name>
</author>
<author wicri:is="90%">
<name sortKey="Wilken, B" sort="Wilken, B" uniqKey="Wilken B" first="B." last="Wilken">B. Wilken</name>
</author>
<author wicri:is="90%">
<name sortKey="Wimmer Chweingruber, R R" sort="Wimmer Chweingruber, R R" uniqKey="Wimmer Chweingruber R" first="R. R." last="Wimmer Chweingruber">R. R. Wimmer Chweingruber</name>
</author>
<author wicri:is="90%">
<name sortKey="Zurbuchen, T H" sort="Zurbuchen, T H" uniqKey="Zurbuchen T" first="T. H." last="Zurbuchen">T. H. Zurbuchen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:C85B37DC10326CFC14C85F49911C6E3E18401C85</idno>
<date when="2000" year="2000">2000</date>
<idno type="doi">10.1029/1999JA000358</idno>
<idno type="url">https://api.istex.fr/document/C85B37DC10326CFC14C85F49911C6E3E18401C85/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001366</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Composition of quasi‐stationary solar wind flows from Ulysses/Solar Wind Ion Composition Spectrometer</title>
<author wicri:is="90%">
<name sortKey="Von Steiger, R" sort="Von Steiger, R" uniqKey="Von Steiger R" first="R." last="Von Steiger">R. Von Steiger</name>
</author>
<author wicri:is="90%">
<name sortKey="Schwadron, N A" sort="Schwadron, N A" uniqKey="Schwadron N" first="N. A." last="Schwadron">N. A. Schwadron</name>
</author>
<author wicri:is="90%">
<name sortKey="Fisk, L A" sort="Fisk, L A" uniqKey="Fisk L" first="L. A." last="Fisk">L. A. Fisk</name>
</author>
<author wicri:is="90%">
<name sortKey="Geiss, J" sort="Geiss, J" uniqKey="Geiss J" first="J." last="Geiss">J. Geiss</name>
</author>
<author wicri:is="90%">
<name sortKey="Gloeckler, G" sort="Gloeckler, G" uniqKey="Gloeckler G" first="G." last="Gloeckler">G. Gloeckler</name>
</author>
<author wicri:is="90%">
<name sortKey="Hefti, S" sort="Hefti, S" uniqKey="Hefti S" first="S." last="Hefti">S. Hefti</name>
</author>
<author wicri:is="90%">
<name sortKey="Wilken, B" sort="Wilken, B" uniqKey="Wilken B" first="B." last="Wilken">B. Wilken</name>
</author>
<author wicri:is="90%">
<name sortKey="Wimmer Chweingruber, R R" sort="Wimmer Chweingruber, R R" uniqKey="Wimmer Chweingruber R" first="R. R." last="Wimmer Chweingruber">R. R. Wimmer Chweingruber</name>
</author>
<author wicri:is="90%">
<name sortKey="Zurbuchen, T H" sort="Zurbuchen, T H" uniqKey="Zurbuchen T" first="T. H." last="Zurbuchen">T. H. Zurbuchen</name>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Geophysical Research: Space Physics</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2000-12-01">2000-12-01</date>
<biblScope unit="volume">105</biblScope>
<biblScope unit="issue">A12</biblScope>
<biblScope unit="page" from="27217">27217</biblScope>
<biblScope unit="page" to="27238">27238</biblScope>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
<idno type="istex">C85B37DC10326CFC14C85F49911C6E3E18401C85</idno>
<idno type="DOI">10.1029/1999JA000358</idno>
<idno type="ArticleID">1999JA000358</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Using improved, self‐consistent analysis techniques, we determine the average solar wind charge state and elemental composition of nearly 40 ion species of He, C, N, O, Ne, Mg, Si, S, and Fe observed with the Solar Wind Ion Composition Spectrometer on Ulysses. We compare results obtained during selected time periods, including both slow solar wind and fast streams, concentrating on the quasi‐stationary flows away from recurrent or intermittent disturbances such as corotating interaction regions or coronal mass ejections. In the fast streams the charge state distributions are consistent with a single freezing‐in temperature for each element, whereas in the slow wind these distributions appear to be composed of contributions from a range of temperatures. The elemental composition shows the well‐known first ionization potential (FIP) bias of the solar wind composition with respect to the photosphere. However, it appears that our average enrichment factor of low‐FIP elements in the slow wind, not quite a factor of 3, is smaller than that in previous compilations. In fast streams the FIP bias is found to be yet smaller but still significantly above 1, clearly indicating that the FIP fractionation effect is also active beneath coronal holes from where the fast wind originates. This imposes basic requirements upon FIP fractionation models, which should reproduce the stronger and more variable low‐FIP bias in the slow wind and a weaker (and perhaps conceptually different) low‐FIP bias in fast streams. Taken together, these results firmly establish the fundamental difference between the two quasi‐stationary solar wind types.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>R. von Steiger</name>
</json:item>
<json:item>
<name>N. A. Schwadron</name>
</json:item>
<json:item>
<name>L. A. Fisk</name>
</json:item>
<json:item>
<name>J. Geiss</name>
</json:item>
<json:item>
<name>G. Gloeckler</name>
</json:item>
<json:item>
<name>S. Hefti</name>
</json:item>
<json:item>
<name>B. Wilken</name>
</json:item>
<json:item>
<name>R. R. Wimmer‐Schweingruber</name>
</json:item>
<json:item>
<name>T. H. Zurbuchen</name>
</json:item>
</author>
<articleId>
<json:string>1999JA000358</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<abstract>Using improved, self‐consistent analysis techniques, we determine the average solar wind charge state and elemental composition of nearly 40 ion species of He, C, N, O, Ne, Mg, Si, S, and Fe observed with the Solar Wind Ion Composition Spectrometer on Ulysses. We compare results obtained during selected time periods, including both slow solar wind and fast streams, concentrating on the quasi‐stationary flows away from recurrent or intermittent disturbances such as corotating interaction regions or coronal mass ejections. In the fast streams the charge state distributions are consistent with a single freezing‐in temperature for each element, whereas in the slow wind these distributions appear to be composed of contributions from a range of temperatures. The elemental composition shows the well‐known first ionization potential (FIP) bias of the solar wind composition with respect to the photosphere. However, it appears that our average enrichment factor of low‐FIP elements in the slow wind, not quite a factor of 3, is smaller than that in previous compilations. In fast streams the FIP bias is found to be yet smaller but still significantly above 1, clearly indicating that the FIP fractionation effect is also active beneath coronal holes from where the fast wind originates. This imposes basic requirements upon FIP fractionation models, which should reproduce the stronger and more variable low‐FIP bias in the slow wind and a weaker (and perhaps conceptually different) low‐FIP bias in fast streams. Taken together, these results firmly establish the fundamental difference between the two quasi‐stationary solar wind types.</abstract>
<qualityIndicators>
<score>7.988</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>598 x 815 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>0</keywordCount>
<abstractCharCount>1643</abstractCharCount>
<pdfWordCount>9695</pdfWordCount>
<pdfCharCount>87010</pdfCharCount>
<pdfPageCount>22</pdfPageCount>
<abstractWordCount>249</abstractWordCount>
</qualityIndicators>
<title>Composition of quasi‐stationary solar wind flows from Ulysses/Solar Wind Ion Composition Spectrometer</title>
<genre.original>
<json:string>article</json:string>
</genre.original>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>105</volume>
<publisherId>
<json:string>JGRA</json:string>
</publisherId>
<pages>
<total>22</total>
<last>27238</last>
<first>27217</first>
</pages>
<issn>
<json:string>0148-0227</json:string>
</issn>
<issue>A12</issue>
<subject>
<json:item>
<value>INTERPLANETARY PHYSICS</value>
</json:item>
<json:item>
<value>Solar wind plasma</value>
</json:item>
<json:item>
<value>Solar wind sources</value>
</json:item>
<json:item>
<value>Instruments and techniques</value>
</json:item>
<json:item>
<value>Papers on Solar and Heliospheric Physics</value>
</json:item>
</subject>
<genre>
<json:string>journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<title>Journal of Geophysical Research: Space Physics</title>
<doi>
<json:string>10.1002/(ISSN)2156-2202a</json:string>
</doi>
</host>
<publicationDate>2000</publicationDate>
<copyrightDate>2000</copyrightDate>
<doi>
<json:string>10.1029/1999JA000358</json:string>
</doi>
<id>C85B37DC10326CFC14C85F49911C6E3E18401C85</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/C85B37DC10326CFC14C85F49911C6E3E18401C85/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/C85B37DC10326CFC14C85F49911C6E3E18401C85/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/C85B37DC10326CFC14C85F49911C6E3E18401C85/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Composition of quasi‐stationary solar wind flows from Ulysses/Solar Wind Ion Composition Spectrometer</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Blackwell Publishing Ltd</publisher>
<availability>
<p>WILEY</p>
</availability>
<date>2000</date>
</publicationStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Composition of quasi‐stationary solar wind flows from Ulysses/Solar Wind Ion Composition Spectrometer</title>
<author>
<persName>
<forename type="first">R.</forename>
<surname>von Steiger</surname>
</persName>
</author>
<author>
<persName>
<forename type="first">N. A.</forename>
<surname>Schwadron</surname>
</persName>
</author>
<author>
<persName>
<forename type="first">L. A.</forename>
<surname>Fisk</surname>
</persName>
</author>
<author>
<persName>
<forename type="first">J.</forename>
<surname>Geiss</surname>
</persName>
</author>
<author>
<persName>
<forename type="first">G.</forename>
<surname>Gloeckler</surname>
</persName>
</author>
<author>
<persName>
<forename type="first">S.</forename>
<surname>Hefti</surname>
</persName>
</author>
<author>
<persName>
<forename type="first">B.</forename>
<surname>Wilken</surname>
</persName>
</author>
<author>
<persName>
<forename type="first">R. R.</forename>
<surname>Wimmer‐Schweingruber</surname>
</persName>
</author>
<author>
<persName>
<forename type="first">T. H.</forename>
<surname>Zurbuchen</surname>
</persName>
</author>
</analytic>
<monogr>
<title level="j">Journal of Geophysical Research: Space Physics</title>
<title level="j" type="abbrev">J. Geophys. Res.</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="DOI">10.1002/(ISSN)2156-2202a</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2000-12-01"></date>
<biblScope unit="volume">105</biblScope>
<biblScope unit="issue">A12</biblScope>
<biblScope unit="page" from="27217">27217</biblScope>
<biblScope unit="page" to="27238">27238</biblScope>
</imprint>
</monogr>
<idno type="istex">C85B37DC10326CFC14C85F49911C6E3E18401C85</idno>
<idno type="DOI">10.1029/1999JA000358</idno>
<idno type="ArticleID">1999JA000358</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2000</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract>
<p>Using improved, self‐consistent analysis techniques, we determine the average solar wind charge state and elemental composition of nearly 40 ion species of He, C, N, O, Ne, Mg, Si, S, and Fe observed with the Solar Wind Ion Composition Spectrometer on Ulysses. We compare results obtained during selected time periods, including both slow solar wind and fast streams, concentrating on the quasi‐stationary flows away from recurrent or intermittent disturbances such as corotating interaction regions or coronal mass ejections. In the fast streams the charge state distributions are consistent with a single freezing‐in temperature for each element, whereas in the slow wind these distributions appear to be composed of contributions from a range of temperatures. The elemental composition shows the well‐known first ionization potential (FIP) bias of the solar wind composition with respect to the photosphere. However, it appears that our average enrichment factor of low‐FIP elements in the slow wind, not quite a factor of 3, is smaller than that in previous compilations. In fast streams the FIP bias is found to be yet smaller but still significantly above 1, clearly indicating that the FIP fractionation effect is also active beneath coronal holes from where the fast wind originates. This imposes basic requirements upon FIP fractionation models, which should reproduce the stronger and more variable low‐FIP bias in the slow wind and a weaker (and perhaps conceptually different) low‐FIP bias in fast streams. Taken together, these results firmly establish the fundamental difference between the two quasi‐stationary solar wind types.</p>
</abstract>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>index-terms</head>
<item>
<term>INTERPLANETARY PHYSICS</term>
</item>
<item>
<term>Solar wind plasma</term>
</item>
<item>
<term>Solar wind sources</term>
</item>
<item>
<term>Instruments and techniques</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article-category</head>
<item>
<term>Papers on Solar and Heliospheric Physics</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1999-09-27">Received</change>
<change when="2000-07-05">Registration</change>
<change when="2000-12-01">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/C85B37DC10326CFC14C85F49911C6E3E18401C85/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgra14966">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202a</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRA"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS">Journal of Geophysical Research: Space Physics</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="120">
<doi>10.1002/jgra.v105.A12</doi>
<idGroup>
<id type="focusSection" value="1"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Space Physics</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="105">105</numbering>
<numbering type="journalIssue">A12</numbering>
</numberingGroup>
<coverDate startDate="2000-12-01">1 December 2000</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="120" status="forIssue">
<doi>10.1029/1999JA000358</doi>
<idGroup>
<id type="editorialOffice" value="1999JA000358"></id>
<id type="unit" value="JGRA14966"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="22"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Papers on Solar and Heliospheric Physics</title>
<title type="tocHeading1">Papers on Solar and Heliospheric Physics</title>
</titleGroup>
<copyright ownership="thirdParty">Copyright 2000 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="1999-09-27"></event>
<event type="manuscriptAccepted" date="2000-07-05"></event>
<event type="publishedPrint" date="2000-12-01"></event>
<event type="firstOnline" date="2012-09-20"></event>
<event type="publishedOnlineFinalForm" date="2012-09-20"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv1.0_TO_WileyML3Gv1.0.3 version:1.2; WileyML 3G Packaging Tool v1.0" date="2012-12-01"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-30"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">27217</numbering>
<numbering type="pageLast">27238</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/2100">INTERPLANETARY PHYSICS</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/2164">Solar wind plasma</subject>
<subject href="http://psi.agu.org/taxonomy5/2169">Solar wind sources</subject>
<subject href="http://psi.agu.org/taxonomy5/2194">Instruments and techniques</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgra14966-cit-0000" type="self">
<author>
<familyNamePrefix>von</familyNamePrefix>
<familyName>Steiger</familyName>
,
<givenNames>R.</givenNames>
</author>
,
<author>
<givenNames>N. A.</givenNames>
<familyName>Schwadron</familyName>
</author>
,
<author>
<givenNames>L. A.</givenNames>
<familyName>Fisk</familyName>
</author>
,
<author>
<givenNames>J.</givenNames>
<familyName>Geiss</familyName>
</author>
,
<author>
<givenNames>G.</givenNames>
<familyName>Gloeckler</familyName>
</author>
,
<author>
<givenNames>S.</givenNames>
<familyName>Hefti</familyName>
</author>
,
<author>
<givenNames>B.</givenNames>
<familyName>Wilken</familyName>
</author>
,
<author>
<givenNames>R. R.</givenNames>
<familyName>Wimmer‐Schweingruber</familyName>
</author>
, and
<author>
<givenNames>T. H.</givenNames>
<familyName>Zurbuchen</familyName>
</author>
(
<pubYear year="2000">2000</pubYear>
),
<articleTitle>Composition of quasi‐stationary solar wind flows from Ulysses/Solar Wind Ion Composition Spectrometer</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>105</vol>
(
<issue>A12</issue>
),
<pageFirst>27217</pageFirst>
<pageLast>27238</pageLast>
, doi:
<accessionId ref="info:doi/10.1029/1999JA000358">10.1029/1999JA000358</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRA.JGRA14966.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">Composition of quasi‐stationary solar wind flows from Ulysses/Solar Wind Ion Composition Spectrometer</title>
<title type="shortAuthors">von Steiger ET AL.</title>
</titleGroup>
<creators>
<creator xml:id="jgra14966-cr-0001">
<personName>
<givenNames>R.</givenNames>
<familyNamePrefix>von</familyNamePrefix>
<familyName>Steiger</familyName>
</personName>
</creator>
<creator xml:id="jgra14966-cr-0002">
<personName>
<givenNames>N. A.</givenNames>
<familyName>Schwadron</familyName>
</personName>
</creator>
<creator xml:id="jgra14966-cr-0003">
<personName>
<givenNames>L. A.</givenNames>
<familyName>Fisk</familyName>
</personName>
</creator>
<creator xml:id="jgra14966-cr-0004">
<personName>
<givenNames>J.</givenNames>
<familyName>Geiss</familyName>
</personName>
</creator>
<creator xml:id="jgra14966-cr-0005">
<personName>
<givenNames>G.</givenNames>
<familyName>Gloeckler</familyName>
</personName>
</creator>
<creator xml:id="jgra14966-cr-0006">
<personName>
<givenNames>S.</givenNames>
<familyName>Hefti</familyName>
</personName>
</creator>
<creator xml:id="jgra14966-cr-0007">
<personName>
<givenNames>B.</givenNames>
<familyName>Wilken</familyName>
</personName>
</creator>
<creator xml:id="jgra14966-cr-0008">
<personName>
<givenNames>R. R.</givenNames>
<familyName>Wimmer‐Schweingruber</familyName>
</personName>
</creator>
<creator xml:id="jgra14966-cr-0009">
<personName>
<givenNames>T. H.</givenNames>
<familyName>Zurbuchen</familyName>
</personName>
</creator>
</creators>
<abstractGroup>
<abstract type="main">
<p xml:id="jgra14966-para-0001">Using improved, self‐consistent analysis techniques, we determine the average solar wind charge state and elemental composition of nearly 40 ion species of He, C, N, O, Ne, Mg, Si, S, and Fe observed with the Solar Wind Ion Composition Spectrometer on Ulysses. We compare results obtained during selected time periods, including both slow solar wind and fast streams, concentrating on the quasi‐stationary flows away from recurrent or intermittent disturbances such as corotating interaction regions or coronal mass ejections. In the fast streams the charge state distributions are consistent with a single freezing‐in temperature for each element, whereas in the slow wind these distributions appear to be composed of contributions from a range of temperatures. The elemental composition shows the well‐known first ionization potential (FIP) bias of the solar wind composition with respect to the photosphere. However, it appears that our average enrichment factor of low‐FIP elements in the slow wind, not quite a factor of 3, is smaller than that in previous compilations. In fast streams the FIP bias is found to be yet smaller but still significantly above 1, clearly indicating that the FIP fractionation effect is also active beneath coronal holes from where the fast wind originates. This imposes basic requirements upon FIP fractionation models, which should reproduce the stronger and more variable low‐FIP bias in the slow wind and a weaker (and perhaps conceptually different) low‐FIP bias in fast streams. Taken together, these results firmly establish the fundamental difference between the two quasi‐stationary solar wind types.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Composition of quasi‐stationary solar wind flows from Ulysses/Solar Wind Ion Composition Spectrometer</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Composition of quasi‐stationary solar wind flows from Ulysses/Solar Wind Ion Composition Spectrometer</title>
</titleInfo>
<name type="personal">
<namePart type="given">R.</namePart>
<namePart type="family">von Steiger</namePart>
</name>
<name type="personal">
<namePart type="given">N. A.</namePart>
<namePart type="family">Schwadron</namePart>
</name>
<name type="personal">
<namePart type="given">L. A.</namePart>
<namePart type="family">Fisk</namePart>
</name>
<name type="personal">
<namePart type="given">J.</namePart>
<namePart type="family">Geiss</namePart>
</name>
<name type="personal">
<namePart type="given">G.</namePart>
<namePart type="family">Gloeckler</namePart>
</name>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">Hefti</namePart>
</name>
<name type="personal">
<namePart type="given">B.</namePart>
<namePart type="family">Wilken</namePart>
</name>
<name type="personal">
<namePart type="given">R. R.</namePart>
<namePart type="family">Wimmer‐Schweingruber</namePart>
</name>
<name type="personal">
<namePart type="given">T. H.</namePart>
<namePart type="family">Zurbuchen</namePart>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2000-12-01</dateIssued>
<dateCaptured encoding="w3cdtf">1999-09-27</dateCaptured>
<dateValid encoding="w3cdtf">2000-07-05</dateValid>
<edition>vonSteiger, R., N. A. Schwadron, L. A. Fisk, J. Geiss, G. Gloeckler, S. Hefti, B. Wilken, R. R. Wimmer‐Schweingruber, and T. H. Zurbuchen (2000), Composition of quasi‐stationary solar wind flows from Ulysses/Solar Wind Ion Composition Spectrometer, J. Geophys. Res., 105(A12), 27217–27238, doi:10.1029/1999JA000358.</edition>
<copyrightDate encoding="w3cdtf">2000</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
</physicalDescription>
<abstract>Using improved, self‐consistent analysis techniques, we determine the average solar wind charge state and elemental composition of nearly 40 ion species of He, C, N, O, Ne, Mg, Si, S, and Fe observed with the Solar Wind Ion Composition Spectrometer on Ulysses. We compare results obtained during selected time periods, including both slow solar wind and fast streams, concentrating on the quasi‐stationary flows away from recurrent or intermittent disturbances such as corotating interaction regions or coronal mass ejections. In the fast streams the charge state distributions are consistent with a single freezing‐in temperature for each element, whereas in the slow wind these distributions appear to be composed of contributions from a range of temperatures. The elemental composition shows the well‐known first ionization potential (FIP) bias of the solar wind composition with respect to the photosphere. However, it appears that our average enrichment factor of low‐FIP elements in the slow wind, not quite a factor of 3, is smaller than that in previous compilations. In fast streams the FIP bias is found to be yet smaller but still significantly above 1, clearly indicating that the FIP fractionation effect is also active beneath coronal holes from where the fast wind originates. This imposes basic requirements upon FIP fractionation models, which should reproduce the stronger and more variable low‐FIP bias in the slow wind and a weaker (and perhaps conceptually different) low‐FIP bias in fast streams. Taken together, these results firmly establish the fundamental difference between the two quasi‐stationary solar wind types.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Space Physics</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<genre type="journal">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/taxonomy5/2100">INTERPLANETARY PHYSICS</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/2164">Solar wind plasma</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/2169">Solar wind sources</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/2194">Instruments and techniques</topic>
</subject>
<subject>
<genre>article-category</genre>
<topic>Papers on Solar and Heliospheric Physics</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202a</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRA</identifier>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>105</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>A12</number>
</detail>
<extent unit="pages">
<start>27217</start>
<end>27238</end>
<total>22</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">C85B37DC10326CFC14C85F49911C6E3E18401C85</identifier>
<identifier type="DOI">10.1029/1999JA000358</identifier>
<identifier type="ArticleID">1999JA000358</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2000 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001366 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001366 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:C85B37DC10326CFC14C85F49911C6E3E18401C85
   |texte=   Composition of quasi‐stationary solar wind flows from Ulysses/Solar Wind Ion Composition Spectrometer
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024